If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-36.4=0
a = 1; b = 1; c = -36.4;
Δ = b2-4ac
Δ = 12-4·1·(-36.4)
Δ = 146.6
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{146.6}}{2*1}=\frac{-1-\sqrt{146.6}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{146.6}}{2*1}=\frac{-1+\sqrt{146.6}}{2} $
| 16z−24=8(2z−3) | | -a+28=12 | | n*0.75=36 | | −3t+1=t+9−4t | | 5(2x+4)-4x=32 | | 25=6x-4x+7 | | d=-0.5(0)-10 | | b-26=15 | | 5s=21 | | -1=5p+3p+15 | | 2-v=10 | | 2-|v|=10 | | 3(2x-8)=3x-3 | | 2,5x+18=3.5x-4 | | 6(x=1)-2=2x+4+4x | | -4/5b=27 | | 12x^2-8x-28+21=0 | | k-15/7=12 | | 2(11+x)=46 | | 5x-2(x-4)+8=18 | | -20=4/7*v | | 2(11+x)=54 | | 6/h-25=7 | | 19+5u=99 | | 8x+6x=8x+12 | | -7/8*y=14 | | |3r+6|=18 | | .2x+96=x | | m*m=324 | | 8/r=86 | | n+6=3n-8 | | -4/9a=20 |